
ARPA ORDER NO . 2223

/
,/~

)
~~~~~,

, I S I/ R R - 77 59( ( ~~. April 1977

I)  / I I - —

,4 / L 4 J

~~ Robert Baizer
Neil Goldman

David Wile

Informa l ity in Program Specif ications

-¾

DC

I N F O R MA TI O N  I F N ( J S  1NSTITUTI

.~~( ‘(, Adu,,i~i/ i  ~ W~3 / ~%l ~zr,~~ del Re~-/ Calif or ’z,a ~ ~2 ))

IWIVERSITY OF S0V7JIERN CALIF ORNIA ( 2 !  ~
) ~22-! 11

[DISTBrBuTION STII~TCMCNT A
Appt oved for pub lic r.1.oas

Distzibutio~ Unliait.d
.4

______ - -  -~~~~~~



~~~~~~~~~~~
— .——

~~~~~~
--

~~ 
--——- - -.-- 

~~~
-
~~~~~

-—. -  -

~~

--
~~~

-. — -—
~~~~~~~

--
~~ ~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIFIED
SECURITY CLASSIFICATION OF T I.SIS PAGE (W?i .n Dat a EnS.r.d)

REPORT DOCUMENTATION PAGE READ INSTRUCTION S
_________________________________________________ 

BEFORE_COMPLETING_FORM

c~ 
2. GOVT ACCESSION NO. 3. RECIPIENT’S CATA LOG NUMBER

_ISI/RR_77_
”
~~I7t/ 

______________________________

~~~~

;

I T~~~~15 (.~d c..h,I,l.)___
-L— , y-t ~~~ n~~~i~iIY & ERIOD~~ 5~FERED

Informality in ~ rogram Specifica t ions. Researc h re~~
j

/ ~~ L -I-BI. T ~~~~~~~~~~~~~~~ ‘UI
DAHC’?5-72-G.~O3~8 i.-—Robert ..’Balze~j lc~ ~Neil,G Idman I

David~~ ile J
_____ _____T.

~~~

OJ4CT. TASJ

~
—poI

~

I

~~
?tI 

G ORGA 4wIZ A Z IOJ~I NAME AN D ~ DDRESS - ______ _____

n ormation sciences Institute L—~~~ 
A A k  KUN NUMBERS

4676 Admiralty Way
Marina del Rey, CA 90291

Defense Advanced Research Prolects Agency Apri ~ 77 7II. CO NTROLL I NGOFF ICENA NE AND ADDRESS e~ 
R!J UFl~~l*T5

1400 Wilson Blvd. !~~~~iuMSER OF PAGES

Arl ington, VA 22209 28
j 14. MONITORING AGENCY NAME & ADDRESS(SI di f f . r . n I fran, CantroItSn~ Offlc.) IS. SECURITY CLASS. (ot lbs . r.post.2

Unclassified
IS.. DCCLASSIFICATION/OOWNGRADINO

SCHEDULE

• 15. DISTRIBUTION STATEMENT (of this R.port)

This document approved for public release and sale; distribution is unlimited.

17. DISTRIBUTION STATEMENT (of ffi~ abstract .øf.n,d hi Slack 30, St dSU•rant Sr.. R.panf)

IS. SUPPLEMENTARY NOTES

Also appears in Fourth International Joint Conference on Artificial
Intelligence (Proceedings), 977.

IS. KEY WORDS (Continu. on r.v.ra. .Sd. it n.e...,, ’ and Sd.ntity b, block ni bac)

Formal specification languages, informal languages, meto-evaluation,
software specification, specification generator, symbolic execution

“~1

~~~~~~

•ST RACT (Contlnu. an r.v.r.. .Sd IS n.c.. .,, ’ ~~d IdantliV by bt.ck ,1i bac)

his work is concerned primarily with (I) the procedure by which process—oriented speci-
fications are obtaire d from goal—oriented requirement specifications and (2) computer—
based tools for their construction . It first determines some attributes of a suitable process—
oriented specification language, then examines the reasons why specifications would
stil l be difficult to write in such a language. The key to overcoming these difficulties

seems to be tie careful introduction of informality (i.e., partial , rather than complete ,—

~~~~~~~

_ _ _ _  ~~~~~~~~
S/N 01 02-014’  6601

SECURITY CLAUIFICAI IOW OF THIS 0*01 (~~~sn Data 1,i IIr st.’

DD I~~~~~~~J 1473 EDITION OF ‘ NOV .. IS OUOI. E1’E UNCLASSIFIED

-- -., --
-—. . 

-~ .. ~-.-- ---•--..—-~ - -~--~~~ - —
~~~~~~~~~~ —~~~--~~-_..—-- .= . .-


IIpr— •— . .-•., —

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— -

~~~~

-•,- - • . -

~~~~~

UNCLASSIF lED
SECURITY CLAUIFICATION OF THIS PAGE(Wti .n Data Xnt.r.d,)

\~ 2o.

~~Iescript ions and the use of a computer—based tool that uses context extensively
to complete these descri ptions during the process of constructing a well—fo rmed
specification. Some results obtained by a running prototype of such a c omputer—
based tool on a few informal example specifications are presented and, final ly,
some of the techniques used by this prototype system are discussed.~~~~~

( UNCLASSIFIED
SECURITY CLASSIFICAT ION OF THIS PA5C(W ~ian Dais fnS•r.d)



‘TI 
-— — - -

~~~

.-•-

~~

-. _T h~~~~~~~~~~~~~~
_ _

~~
_ _ _ .-

~~~~~~~~~~~~~~~
- ,,

ARPA ORDER NO. 2223

IS1/RR- 77-~9
April 1977

Robert Baizer _________

Neil Goldman
David Wile 

• • •

~~

• . 

Informality in Program Specifications

AcC!S3I0* sir
_________________

NTI$ While Sectips
lull Stc t I~~ ‘Q

t’~~~~C~ lCEt’ 0
~~

, -~cS~i~,k 

11

~P P .~ TI ( ~C *V ~ f~ il tU t l  COMES

t~~ i L a r . i ~ ~~~~~~

JJ~
INFORMATiON SCiENCES INSTITUTE

4676 Admiralty W’ay/ Mar ina del Rey/ciJifornia 90291
UNIVERSITY OF SO UTHERN CALIFORNIA ( 2 1 3)  S22- 1511

THI S RESEARCH IS SUPPORTEO BY THE ADVANCED RESEARCH PROJECTS AGENCY UNDER CONTRACT NO bANd S 72 C 0305 ARPA ORDER
NO 2223 . PROGRAM CODE NO~ 3D30 AND 3PIO

VIEWS AND CONCLU SIONS CONTAINED IN THIS STUDY ARE THE AUTHOR S AND SHOULD NOT SE INTERPRETED AS REPRESENTING THE

OFFICIAL OPINION OR POLICY OF ARPA THE U S GOVERNMENT OR ANY OTHER PERSON OR AGENCY CONNECTED WITH THEM

THIS DOCUMENT APP ROVED FOR PUBLIC RELEASE AND SALE DISTRIBUTION IS UNLIMITED.

— —



III

CONTENTS

Abstract V

1. Introduction 1

2. Attributes of Suitable Process -oriented Specification Languages 2

3. Why Operational Specifications are Hard to Construct 4

4. Semantic Constructs in Natural Language Specification 4

5. Desirability of Informality S

6. Results 8

7. Description of The Prototype System 18

- .-

g VDfl

____________ 
__.._:414



-~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

V

IIII STRII CT

This research is concerned primarily with (1) the procedure by which
process -oriented specifications are obtained from goal-oriented requirement specifications
and (2) computer-based tools for their construction. It first determines some attributes of
a suitable process-oriented specification language, then examines the reasons why
specifications would still be thfficult to write in such a language. The key to overcoming
these difficulties seems to be the careful introduction of informality based on partial,
rather than complete, descriptions and the use of a computer -based tool that uses context
extensively to complete these descriptions during the process of constructing a
well-formed specification. Some results obtained by a running prototype of such a
computer -based tool on a few informal example specifications are presented and, finally,
some of the techniques used by this prototype system are discussed.



F— 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— - - •-- .• —- - --
~
-

~~
- -.—-- —

~~
-.-—

~~~~~~~~~~~
- ---.-— ----

~~~~~~ 
.
~~~~~~~

.—- -- •-

1

I. INTRODUCTION

A critical step in the development of a software system occurs when its
goal-oriented requirements specification is transformed into a process-oriented form that
specifies how the requirements are to be achieved. Only after this transformation has
occurred can the feasibility of the system be analyzed and the consistency of the process
specification with the requirements be verified. The key to this transformation is
expressing the process-oriented specification abstractly so that its functionality is
completely determined while the class of possible implementations remains broad.

We believe that such abstract process-oriented specifications are the key to
rationalizing the software development process. Such specifications are, in reality,
programs written in a very high level abstract programming language. As such, they could
provide an effective interface between the two major software concerns: functionality and
efficiency. These concerns should be decoupled so that the functionality of a system can
be addressed before its efficiency has been considered. Once functionality has been
accepted, it can be preserved while the system is optimized. Thus, since the abstract
process-oriented specification is a program, its consistency with the requirements could be
formally verified, informally argued, or tested by ac tually executing the specification.
Furthermore , the end user could be given hands-on experience exercising the specification
to see if it behaved as intended. Deviations and/or inconsistencies could be corrected in
the specification before any implementation occurred.

Once the system’s functionality has been accepted by the user, the efficiency of the
system in meeting its performance requirements remains an issue. Such efficiency must
be gained without altering the system’s accepted functiona’ity. We have argued
elsewhere (1] that a computer-based tool can be built which guarantees maintenance of
functionality while a program is optimized without sacrificing the programmer’s ingenuity
or initiative in determining how best to achieve efficiency.

In this work we are concerned primarily with the procedure by which such
process-oriented specifications are obtained and with computer-based tools for their
construction. We will begin by determining some attributes of a suitable process-oriented
specification language, then examine why specifications would still be difficult to write in
such a language. We will argue that the key to overcoming these difficulties is the careful
introduction of informality based on partial, rather than complete, descriptions and the use
of a computer-based tool which utilizes context extensiv.ly to complete these descriptions
during the process of constructing a well formed specification. We will then present some
results obtained by a prototyp. of such a computer-based tool on a few informal .xavn ple
specifications. Finally, we will discuss some of the techniques used by this prototype
system.

r - - - -



2

2. IITTRIItUTES OF SUITrI1JLE PROCESS-ORIENTED SPECIFIC ITION MNCUIJGES

As stated above, a suitable process-oriented specification must completely define
functionality, represent a broad class of possible implementations, and be executable.

How c~n we obtain such a language? We begin by noting that a suitably abstract
programming language is a specification language. Several recent languages almost meet
the above requirements for an executable specification language. They have arisen from
two separate disciplines:

1. Specif scet~on languages. Languages, such as RSL.(2], PSL.(3), etc., designed
specifically for specification, describe a system in terms of data flows and
processing units but do not functionally define the processing. Such languages
can provide a simulation of the described system down to some level of detail,
but cannot describe or simulate its full functionality.

2. Abstract progr amnung Languages. Spawned by Dijkstra ’s notions of structuring, a
generation of programming languages (CLL~4], Alphard[5], Euclid(6], Pearl(7])
has bloomed which isolate the definition of data objects , and t he operations
allowed on them, from their use and manipulation In the program. The result is
the ability to use abstrac t program entities which model those that occur in the
application being programmed. These entities are defined in terms of more
computer-science-oriented entities, which are, in turn, defined in terms of more
primitive ones, until the primitive objects and operations of the language are
reached. Without the successive refinements of the abstract objects and
operations, these languages would be suitable for specification, except that they
would then lose their property of executability. Their executability has been
gained at the expense of complete specification of implementation (down to the
base level of the language).

What is clearly needed, then, is a language which can fully specify a system functionally
without fully specifying its Implementation. What are the required properties of such a
language?

First, it must be able to define and manipulate application-oriented objects (as is
done by the abstract programming languages). Second, the description of these objects
and operations must be in terms of some formalism that does not require successive
refinement to gain functionality and that does not overly constrain the implementation.
This is the key issue that would enable specification and programming languages to be
unified.

Three formalisms have been proposed for this role: sets, axiomatic specification,
and relational data bases.

L ~~~~~~~
--
. ~~~~~~~~~~~~ •



--~~~-.- -~~—~~

3

One of the earliest efforts is Jack Schwartz ’s SETL(83 language. Sets are the single
abstract type allowed for which multiple implementations exist. All the operations on sets
can deal with any of the implementations. Thus, users need not be concerned with any of
these implementations while specifying the manipulations to be performed on their sets.
Because functionality was completely captured by the SElL definitions of sets,
implementation did not have to be considered. However, such implementation-free
functionality existed only for sets and was not extensible.

More recently, Guttag, Horowitz, and Musser (93 have discussed an axiomatic
specification technique in which the functional behavior of new abstract objects are
axiomatically defined by algebraic equations. These algebraic equations act as functional
requirements which any implementation of the objects and operations upon them must
satisfy. Furthermore, they provide a way of executing programs using the operations
directly without providing any implementation. Whenever an operation is performed on an
object, the “state” of that object is transformed by applying the algebraic equation for
that operation to the existing “state.” The resulting state is just another expression in the
algebra. As more aria more operations are performed, these states become more complex.
However, the states can be simplified by general rules of the algebra such as AND(A
False)—>False, or by using the equations for the abstract objects as rewrite rules, such
as for a stack, POP(PUSH( A x))—>A. Such equivalence rules are part of the functional
definition of the operations on the abstract objects. If the axiomatic functional definitions
are complete, then specifications in this language can be directly executed while no
implementation need be selected and the choice of possibilities has not been constrained.
These axiomatic functional definitions provide a user the capability of adding arbitrary new
abstract types to the language that can be manipulated in an implementation-independent
way. This extensible capability is exactly analogous to SETL’s built-in capability to
manipulate sets in an implementation-independent way.

Finally, we have languages in which the “state” is represented by a series of
asser tions in a relational data base, rat her than by an expression, and in which the effec t s
of an action are expressed as a series of additions or deletions to the data base rather
than as an equation to be applied to the “state.” The big difference between these two
approaches is that in the axiomatic approach the functional definitions are expressed as
interactions between the operations on a data type and hence do not rely on any more
primitive notions. In the relational approach, as in SETL, each operation is functionally
defined in terms of how i t af f e c t s a built—in primitive notion, the relational data bas..

The self-defining, or closed, property of axiomatic definitions would seem to favor
that approach because each abstract object and its operations can be considered in
isolation without relying on outside semantics and without specifying any constraints on
th. implementation. Unfortunately, this property comes at the expense of expressing the
behavior of objects entirely in terms of the operations upon them and the need to express
this behavior in the form of algebraic equations so that the •quivalenc. of alternative
sequenceS of operations can be formed (e.g., the POP(PUSH(A x))—) A equiv.Ienc. cit.d
earlier for stacks ).

L ~~~~~~~~~~~~~ _~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~ 



-- - —.-- —— -- .— .-- - - --.--,—— - -~~
---

~ 
,-. -- -.——

~~
-----—-—- --—--- - ~~~‘ -___•---.-___-_-_S_.-_--_ —--- -

4

In the relational approach, rather than stressing a closely knit set of types and
operations on them, objects are perceived entirely in terms of their relationships with
e~’ch other and a set of primitive operations which allow these relationships to be built
and destroyed and to be extracted. Non-primitive operations exis t on the objects , but
they merely alter the set of relationships that exist between the objects. This view
allows incremental elaboration of objects , their relationships with each other , and
operations upon them. Most importantly, this approach enables objects and ope rations to

be modeled almost exactl y as they are conceived by the user in his application (as
measured by how they are expressed in our most unconstrained form of

communication--natural language).

This latter property is the reason we have selected the relational approach: We feel
it minimizes the difficulty that a user would have in constructing an operational
specification.

3. WIl Y OP I ~R/I TlONi1l~ SPRCIFIC/I TIONS iIRE ll 1) RD TO CONSTRUCT

Unfortunately, even when ~he user ’s difficulties in constructing operational
specifications are minimized by the use of the relational approach, the task remains
burdensome and error-prone, primarily because although a suitable language has been
chosen, it is still formal. Each reference to an object or action must be consistent and
complete. The large number of interacting objects , actions, and relationships require the
user to do a great deal of (error-prone) clerical bookkeeping which impedes his attention
to the specifica tion itself and reduces its reliability.

Suppose we constructed a computer aid which relieved the user of these clerical
chores. How would the specification task be altered’ We begin by considering how peopue
specify software systems when unconstrained by computer formalisms.

4. SE M/J NTIC CONSTRUCTS IN N/J TUR/P L L/INCU,ICE SPECIFIC/I TION

We studied many actual natural language software specifications. The main semantic
difference between these specifications and their formal equivalent is that partial
descriptions instead of complete descriptions are used. When such partial descriptions
are understood it is because they can be completed from the surrounding context. The
partial descriptions focus both the writer’s and the reader’s attention on the relevant
issues and condense the spec ification. Furthermore, the extensive use of context almost
totally eliminates bookkeeping operations from the natural language specification. These
are the properties we find so useful in natural language specifications and which we so
so rely lack in formal specification languages.



5

We have evidence (see sections 5 and 6] in the form of a running prototype system
that these properties can be added to a previously formal specification language and that
a computer tool can complete the partial description from the existing context. Such a
capability is not totally new; it already exists in limited form.

Most programming languages use the context provided by declarations to complete

partial descriptions of the operations to be performed on those objects (e.g., ADD becomes
either INTEGER-ADD or FLOATING-ADD, depending on the declared attributes of its
operands). The Codsyl DBDTG report (10] goes further in the use of context by
completing partial references to an item by use of the “current” instance of that item as
established by some other statement in the program. Data base declarations are also
used to determine how various program variables are to be used in completing partial
descrip tions of data base items.

These uses of context in programming languages have been accepted, and even
championed, because for each use, the context-providing mechanisms are well-defined, the
completion rules are simple and direct, and only a single interpretation is valid.

The context mechanisms we are proposing here are much more complex, the context
generated much more diffuse , and a given partial description may produce zero , one, or
several valid interpretations. Zero valid interpretations means that the partial description
is inconsistent with the existin g context. A single valid interpretation means that the
partial description can be unambiguously completed through use of the existing context.
Multiple valid interpretations indicate that sufficient context does not exist to complete the
description and that interaction with the user is required to resolve the ambiguity.

Our work should be viewed as an effort to provide more general context
• mechanisms to resolve the ambiguity introduced in the specification by partial descriptions.
• It, as we believe, such mechanisms can be provided, would they be a beneficial addition to

specifica tion languages?

I
5. DESIR/JI1 ILITY OF INFORM/JUr Y

We recognize that our approach is controversial and apparently opposes the current
• trend to make program specifications more and more formal and to introduce such

formalisms earlier in the development cycle. We believe closer examination will reveal
that our approach is not only compatible with the desire for increased formalism, but a
necessary adjunct to it.

Attention has been focused on formalisms for program specification to the exclusion
of concern with the difficulty and reliability of creating such formal specifications and with
maintaining them during the program life-cycle. Our approach specifically addresses these
Issues.

-rn .--- -- - -. -
~~~~

- - •
~~~~~~~~~~~~~~~~~~~

-
~~~~~~


6

First, it should be recognized that informalit y will always exist during the
formulation of a specification. The issue is whether the informal form is explicitly entered

• into the computer and transformed, with the user’s help, into the formal specification, or
whether it exists only outside the computer system in someone’s head or written
somewhere in unanalyzable form. We should consider , then, the feasibility and the
desirability of a computer-based tool to aid in the transformation of an informal
specification into a formal one.

Let us begin with the question of feasibility. While the results presented in the
next section are preliminary and the examples chosen far smaller and simpler than real
specifications, we are optimistic about continued progress and ultimate practicality of this
approach. However, since these results are far from conclusive, we invite the reader to
reach his own conclusions after considering the examples of the next section and the
description of the prototype system which follows them.

Assuming for the moment that such a system is feasible, we consk~er its desirabilit y.
Informal specifications have three obvious advantages. First , they are more concise than
formal specifications and focus both the specifier ’s and the reader ’s attention. They are
more concise because only part of the specification is explicit; the rest is implicit and must
be extrac ted from context. Attention is focused on the explicit information and, therefore,
away fr om the implicit information, which increases both the readability and the
understandability of the specification.

The second advantage is that informal specifications which employ partial rather
than complete descriptions are a familiar , in fac t normal, mode of communication. This
reduces the training requirements of users, permits a wider set of users, and reduces
dependence on the judgment and accuracy of intermediaries.

The final advantage deals with the maintainability of the system. Since about 701.
of the total life cycle costs of large systems are for maintenance , any improved capabilities
in this area are very significant. As we have argued elsewhere [1), the main deterrent to
maintainability is optimization. Optimization spreads information throughout a program and
increases its complexity through increased interactions among the parts. Both of these
optimization effects greatly impede the ability to alter the program. An obvious solution
is to alter an unoptimized specification and then reoptimize the program. No
cost-effective and reliable technology currently exists for such reoptimizetion, though one
has been proposed (1].

A similar situation exists between the informal and formal specifications. The
creation of a formal specification involves spreading implicitly specified information
throughout the specification and increasing the complexity by structuring the specification
into parts and establishing the necessary interfaces between them. As before, both of
these formalization effects greatly impede the ability to mo d if y the specification. Again, a
solution is obvious: modify the informal specification and retransform it into a revised

_ _ _ _ _ _ _ _ _ _ _ _

7

formal specification. Under the assumed feasibility of our approach, this solution would be
possible and would greatly simplify maintaining the formal specification of the system.

We now consider three possible disadvantages of a computer-based tool to aid in
transforming an informal specification into a formal one. The first possible disadvantage is
that the informal constructs will be misunderstood. This is entirely possible, just as it is
when a human intermediary interprets an informal specification. While the computer tool
cannot match human performance in understanding the informal specification, it operates
much more methodically. It can question the user when it detects that there are
alternative interpretations of some statement. It can record and make explicit all
assumptions it makes in transforming the formal specification. It can paraphrase the
informal specification to verify that its interpretation is accurate (the current prototype
system records its assumptions and interacts with the user to determine the correct
interpretation of unresolved ambiguities, but does not yet contain any paraphrase
capabilities). Thus, feedback and interaction with the user can eliminate the problem of
possible misinterpretation of the informal specification.

The second possible disadvantage is that the computer-based tool will decrease the
reliability of the transformation to a formal specification. If the informal specification
exists only outside the computer system, then we must rely on the accuracy of the user
or, more often, on some trained intermediary to accuratel y trans fo rm it into a formal
specification. This transformation depends upon properly understanding the informal
specification (see previous paragraph), then restating it in the required formalism. Once
the proper understanding has been obtained, the restatemen t involves moving information
from one place to another and changing its form. History would indicate that such clerical
bookkeeping transformations are error-prone and can always be done more reliably by a
computer tool. Hence, once the correct interpretation has been obtained through the use
of context and interaction with the user, the restatement of the informal specification into
the required formalism can be more reliably performed by the computer-based tool than
by the user or his intermediary. Therefore , reliability would be improved rather than
reduced by such a tool once understanding was obtained.

Understanding, rather than reliability, thus emerges as the key feasibility issue.
One way to improve understanding is to increase the interaction with the user. This leads
to the third possible disadvantage: that the required volume of interaction will abrogate
the advantage of informality. We do not expect this to be an issue with the current
system or its successors , since we feel that its current performance level, as evidenced in
the following section, indicates that the required interaction rate would be sufficiently
small to prevent annoying or sidetracking the user.

Thus, we conclude that the availability of such a computer-based tool would be
highly desirable because it would simplify the creation of a formal specification while
increasing the reliability of the formulation process; improve the maintainability of the
formal specification; reduce special training requirements; and expand the base of potential

~~~•---- - • •- - -~~~~~~~~~~~~~~~ • ~~~~~~~~~- -~~~~~~~~ - - -~~~



- • -~~~~~ -~~r r- —~~~~~~~~~—~~~~ -~ • •~~ - — .

8

• users. The question of feasibility, which remains as the paramount issue, rests clearly on

the ability to correctl y interpret an informal specification. We therefore now present
some preliminary results obtained by the prototype system and describe its operation so
that the reader can observe its performance level and judge for himself the generality of
its context resolution -mechanisms and therefore its feasibility.

6. RESULTS

This section presents two examples successfully handled by the prototype system.

The examples were extracted from actual natural language specification manuals, and the
results illustrate the power of the system’s context mechanisms. However, our system is
a prototype and, as such, it is far from complete. New examples currently expose new

- 
- 

problems which are resolved by adding new capabilities to the system. Therefore, until

some measure of closure is obtained, it should not be assumed that the prototype will

correctly process new examp les of the same “complexity”. Our goal is to add each new
capability in as general a form as possible. In this way we expect to “grow” the system

as more complex and varied examples are tried.

For . each of the examples, we present three figures: the actual parenthesized
version of the informal input currently used by the system (to avoid syntactic parsing
problems), a manually marked version which indicates some of the informalities to be
resolved by the system, and a stylized version of the formal output program produced by
the system. •

The first example is a system which automatically distributes messages to offices on
• the basis of a keyword search of the text of the message. Figure 1 gives the informal

natural language description. Figure 2 indicates some of the imprecisions contained in this

example which must be resolved to obtain the system’s formalization of this specification
as an operational program (Figure 3).

To give some measure of the amount of imprecision in this example and, therefore,
the amount of aid provided by the system, we have compiled the following statistics:

Number of missing operands — 18
Number of incomplete references 22
Number of implicit type conversions — 9
Number of terminology changes 3
Number of refinements or elaborations 2
Number of implicit sequencing decisions — 7

4 ~~~
---•-— 

~~~~

- • . - -
~~~~~~~



9

ACTUAL INPUT FOR MESSAGE PROCESSING EXAMPLE

* ((MESSAGES ((RECEIVED) FROM (THE “AUTOOIN-ASC”))) (ARE PROCESSED) FOR
(AUTOMATIC DISTRIBUTION ASSIGNMENT))

* ((THE MESSAGE) (IS DISTRIBUTED) TO (EACH ((ASSIGNED)) OFFICE))

* ((THE NUMBER OF (COPIES OF (A MESSAGE) ((DISTRIBUTED) TO (AN OFFICE)))). (IS) (A
FUNCTION OF (WHETHER ((THE OFFICE) (IS ASSIGNED) FOR ((“ACTION”) OR
(“INFORMATION”))))))

* ((THE RULES FOR ((EDITING) (MESSAGES))) (ARE) (: ((REPLACE) (ALL LINE-FEEDS) WITH
(SPACES)) ((SAVE) (ONLY (ALPHANUMERIC CHARACTERS) AND (SPACES))) ((ELIMINATE) (ALL
REDUNDANT SPACES))))

* (((TO EDIT) (THE TEXT PORTION OF (THE MESSAGE))) (IS) (NECESSARY))

* (THEN (THE MESSAGE) (IS SEARCHED) FOR (ALL KEYS))

* (WHEN ((A KEY) (IS LOCATED) IN (A MESSAGE)) ((PERFORM) (THE ACTION ((ASSOCIATED)
WITH (THAT TYPE OF (KEY))))))

* ((THE ACTION FOR (TYPE-0 KEYS)) (IS) (: (IF ((NO OFFICE) (HAS BEEN ASSIGNED) TO (THE
MESSAGE) FOR (“ACTION”)) ((THE “ACTION” OFFICE FROM (THE KEY)) (IS ASSIGNED) TO (THE
MESSAGE) FOR (“ACTIONs))) (IF ((THERE IS) ALREADY (AN “ACTION” OFFICE FOR (THE
MESSAGE))) ((THE “ACTION” OFFICE FROM (THE KEY)) (IS TREATED) AS (AN “INFORMATION”
OFFICE))) (((LABEL OFFS 1 (ALL “INFORMATION” OFFICES FROM (THE KEY))) (ARE ASSIGNED)
TO (THE MESSAGE)) IF ((REF OFFS1 THEY) (HAVE (NOT) (ALREADY ) BEEN ASSIGNED) FOR
((“ACTION”) OR (“INFORMATION”))))))

* ((THE ACTION FOR (TYPE-i KEYS)) (IS) (: (IF ((THE KEY) (IS) (THE FIRST TYPE-i KEY
((FOUND) IN (THE MESSAGE)))) THEN ((THE KEY) (IS USED) TO ((DETERMINE) (THE “ACTION” —

OFFICE)))) (OTHERWISE (THE KEY) (IS USED) TO ((DETERMINE) (ONLY “INFORMATION”
OFFICES)))))

FIGURE 1 

---—~~~ - - - - — -- -- - • -



10

SPECIFICATION DEFICIENCIES OF MESSAGE PROCESSING EXAMPLE
(
~Y CONVENTIONAL PROGRAIWIINC STANDARDS)

_ _ _  

Z~~ ~~~~~~~• MESSAGES RECEIVE D FROM THE AUTODIN_P$%’AR PROCESSED AUTOMATIC 4STlUBUTI9U(~~~I!~~~~~• L
* THE MESSAGE IS DISTRIBUTED TO EACH P551 FICi:’

* THE NUMBER OF COPIES OF A I(ESSRG DISTRIBUTED TO AN OFFICE IS A FUNCTION OF WHETHER THE OFFICE

~~~ d ~ 4aj,, rL~44it4C/
IS ASSIGNED FOR ACTION ORGINR TION.

• THE FOR(j~I~~ 1~~~~E ARE (1) REPLACE ALL LINE4EED~~ UITh ES (2) YE ONLY

ALPHANUMERIC CHARACTERSIANO SPACES AND THEN (3) ELIMINATE ALL REDUNDANT ss~)””
4~7’

* IT IS NECESSARY TO(~~~~~ TEXT PORTION OF THE MES)~~~~~

* Th,11E5sat(IS THEN RAGHED FOR ALL KEYS.

* WHEN P KEY IS LOC~~~~~1
’N ~~~~~~ G~~~~ERFORM ~~~~~~~~~~~~~~~~~~ WITH THAT

a THE TION FOR TYPE—a KEYS 1St IF NO ACTION OFFICE HAS BEEN ASSIGNED TO THE MESSAGE, THE ACTION
/

OFFICE THE KEY IS ASSIGNED TO THE MESSAGE FOR ACTION .,4IF THER~~IS ALREADY RN AC~~ON OF~ ICE

-
• FOR THE MESSAGE , THE ACTION OFFICE FROM THE KEY~~~~~~~~TED S A N INFORMATION Ô~c~5J

. ‘~~~~
‘

INFORMATION OFFICES FROM THE KEY ARE ASSIGNED TO THE MESSAGE IF THEY HAVE NOT ALREADY BEEN
t~, ~~~~~, ,rled4sl~~~Li A

ASSIGNED FOR ACTION OR INFORMAT~~~.

- -
* THE ACTION FOR TYPE—I 1St IF THE KEY 1$ THE FIRST TYPE-I KEY FOUND IN THE MESSAGE THEN THE KEY

I USED TO Of WIll ~TH(ACTION OP
’
’
CE. O~HE1WIS(KEY

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

S.

FIGURE 2

- ~~~ - -~~~~~~ • - - - -  ~~~~~~~~~ • - - -- • •~~-- --~~~~~~~ - - - ~~~~~~~~~~



11

PROGRAM CREATED BY PROTOTYPE SYSTEM

(WHENEVER (rsceive m.ssage FROM autod ln—asc BY safe)

DO (.dlt tex t OF message)
(search tex t OF m.ssage FOR (CREATE THE SET OF iceys))
(distribu te—process 1 message))

(distr i bute—process I (message )
(FOR ALL of fices UHICH ARE (assigned of f ic e TO message FOR ANYTHING)

(d istribule—procma. 2 m.ssag. office)))

(distribute—process 2 (message offic .)
(FOR (function 1 (TRUTH—VALUE OF (assigned effic . TO message FOR action ))

(TRUTH—VALUE OF (assigned offi c . TO message FOR information)))
TIMES (distribut e A copy WHICH IS A copy OF message AND located PT sa fe

FROM safe TO location OF office) )) (edit (text)
(FOR ALL line— feeds WHICH ARE IN text

(re placs lin e— f sed IN text BY (CREATE AN ORDERED SET OF spaces)))
(keep THE (un i on (CREATE THE SET OF alphanu meric chat act.rs IN tsxt)

-
• 

(CREATE THE SET OF spaces ZN text))
FROM text)

(FOR ALL spaces WHICH ARE IN t ext  MAO redundant IN te x t
(remove sp ace FROM text ) )

(WHENEVER (locate P key IN text OF message PT POSITION ANYTHING)
DO(CASE (type OF key)

(type—I (type-I-action message key )) -•

(type —I (ty pe—I—action message keg ))))

• (type—I—action (messag e key )
(IF (NOT (EXISTS action of f i ce FOR messa ge))

THEN (assi gn THE action of f i ce  1 FOR key TO messa ge FOR action )
ELSE

(treat action of f ic e 2 FOR key AS in formation o f f i ce  2 FOR key
IN (IF (NOT (assigned off ce 2 TO message FOR action OR informatio n))

THEN assign of Uc. 2 TO message FOR information))))
(FOR ALL o f f i ce  3 WHICH ARE (assigned office 3 TO key FOR information))

(IF (NOT (ass igned of f ice 3 TO message FOR ac tion  OR information)
THEN (assign office 3 TO message FOR information))))

(t y pe—I—act ion (message key)
(IF key • (key I WHICH IS (SEARCH HISTORY FOR FIRST

(locate t ype—I key I IN text OF message AT position ANYTHING)))
THEN (determine THE action of f i ce  FOP message

BY (typ e—I-actio n messag e key ))

ELSE (determine ONLY THE infor.etien eff ice FOP message
• BY (IF (EXISTS act ion of f ice  FOP message)

THEN (treat action off ice 1 FOP keg PS in formation elf ice I FOP key
IN (IF (NOT (assigned offIc e 1 TO message FOR action OR infermatfen))

THEN (assign office I TO message FOP Information))))
(FOR ALL office 2 WHICH ARE (ass igned •ffice 2 TO key FOP in formation)

(If (NOT (assi gned office 2 TO message FOP action OP inferuatien))
THEN (assign off ic e 2 TO message FOP infermat ien))Pfli

P1CC/RE 3

~



12

To illustrate how context is used to complete the partial descriptions in the example ,
we consider a few cases :

1. Partial sequ.nc&ng. Distribution is never explicitly invoked in the informal
specification. However , the first sentence indicates that Assignment is

• perf ormed to enable the Distribution. Hence, Distribution should be explicitly
invoked af ter Assignment.

2. Missing operand. Sentence two indicates that the message should be distributed
to certain offices--those that are “assigned.” But, as can be determined from
other usages in the informal specifications, of fices can be “assigned” to either
messages or keys. This missing operand can be resolved by remembering that
Assignment was performed to enable Distribution. Hence, Distribution must use
some result of the assignment process. Assignment, from the last two input
sentences, assigns offices to the current message. Hence, Distribution must

• consume offices assigned to that message.

3. Incomplete reference. Sentence four says to replace all line feeds with spaces.
First, replace requires a third operand, some set in which the replacement will
occur. Context indicates that this missing operand should be the text of the
message parameter of Edit. Second, the use of a plural in the operand of an
ac tion which expects a singular operand, indicates an implicit loop. Hence, we
have, “for all line feeds, replace the line feed by a space in the text of the
message.” Now, which line feeds are we concerned with? Only those in the text
of the message because they are the only ones which can be replaced. Hence,
completing the partial referenc e, we have “for all line feeds in the tex t of the
message, replace the line feed by a space in the text of the message.”

It should be noted that of the approximately 61 decisions which had to be made f or
this example, all but one were resolved correctly by the prototype system. The message
it distributed is the edited one (with all punctuation removed) rather than the original
unedited one. The cause of the error is that the system does not understand the
difference between an objec t being changed and its participating in relations with other
objects; therefore, it has no concept of the original state of an object and hence does not

• consider this as a possible completion of any partial reference.

This capability can clearly be added to the system, but the impor tant point is that
• interpretation errors will occur, just as t hey do when human intermediaries are used to

produce the formal specification. It is therefore essential to provide extensive feedback
and assumption-testing facilities so that such errors, when made, can be discovered and
corrected by the user.



13

The second example is from a system for scheduling a satellite communication
channel by multiplexing it among several users (subscribers). It specifies the component
of the system which receives a schedule (SOL) from the controller of the sa~~.lite channel
and extrac ts from it the portions of the next transmission cycle which have been reserved
for a particular subscriber and those portions available to any user (RATS). This
information is placed in a transmission schedule used by another component to actually
utilize the chennel during the allowed periods. Figure 4 gives th. informal natural
language description. Figure 5 indicates some of the imprecisions contained in this

example which must be resolved to obtain the system’s formalization of the specification
as an operational program (Figure 6). In addition to the process description of Figure 4,
we have assumed that the formulas referenced and a structural description of the objects
of t he domain have been separately specified.

The relevant portions of these specifications are that the SOt. is an ordered set of
subscriber and RATS entries. Each subscriber entry has subscriber identifier and
transmission length fields, while a RATS entry has only the lat ter. The transmission
schedule is a set of entries, each of which is composed of an absolute transmission time
and a transmission length. One of these entries is the primary entry of the transmission
schedule. Finally, formulas 1 and 2 both take an SOL entry as input and produce,
respectively, a relative and an absolute transmission time.



~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~

‘ -
~~~~~~

-

~~~~~~~~

-

14

- I ((THE SOL)
(IS SEARCHED)
FOR
(AN ENTRY FOR (THE SUBSCRIBER))))

(IF (ft: )f~~)
(IS FOUND))

((THE SUBSCRIBER’S (RELATIVE TRANSUSSION TIME))
(IS COMPUTED) ACCORDING-TO (“FORMULA-i”))))

((THE SUBSCRIBER’S (CLOCK TRANS~ASSION li ME))
(IS COMPUTED) ACCORDING-TO (“FORMULA-2”)))

(WHEN ((THE (TRANS~ASSION TIME))
(HAS BEEN COMPUTED))

((IT)
(IS INSERTED)
AS (THE (PRIMARY ENTRY))
IN (A (TRANSMSSION SCHEDULE])

[FOR (EACH RATS ENTRY)
(PERFORM)
(: ((THE RATS’S (RELATIVE TRANSMSSION TIME))

(IS COMPUTED) ACCORDING-TO (“FORMULA-i”))
((THE RATS’S (CLOCK TRANSM1SSION TIME))
(IS COMPUTED) ACCORDING-TO (“FORMULA-2’J)

((THE RATS (TRANShUSSION TIMES))
(ARE ENTERED)
INTO (THE SCHEDULE)))

FIGURE 4

_ _ _ _ _ _ _ _ _  
—-

~~~
—

~
---• ---

~~ - _ _ _ _

16

(build-transmission-schedule (sol subscriber)
(CREATE transmission-schedule)

(search sol FOR A subscribe r -entry SUCH THAT
sid OF subscriber EQUALS sid OF subscriber-entry)
(IF (locate A subscriber-entry SUCH THAT

sid OF subscriber EQUALS sid OF subscriber-entry
IN sal)

THEN
(MAKE (RESULT-OF (FORMULA-i subscriber-entry))

BE THE relative-transmission-time OF subscriber)
(MAKE (RESULT-OF (FORMULA-2 subscriber-entry))
BE THE clock-transmission-time OF subscriber))
(FOR ALL rats WHICH ARE IN sol

DO (MAKE (RESULT-OF (formula-i rats))
BE THE relative-transmission-time OF rats)

(MAKE (RESULT-OF (formula-2 rats))
BE THE clock- transmission-time OF rats))
(FOR ALL clock—transmission-time OF rats

DO (MAKE clock-transmission-time BE THE
transmission-time OF (CREATE transmission-entry))
(ADD transmission-entry TO transmission-schedule)))

(WHENEVER (MAKE time BE THE clock-transmission-time OF subscriber)
DO (MAKE time BE THE transmission-time OF (CREATE transmission-entry))

(ADO transmission-entry TO transmission-schedule)
(MAK E transmission -entry BE THE primary -entry OF transmission -schedule))

FIGURE 6


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — • —— —- • -~~~• -

17

Using the same measures of imprecision as in the first example , we find that this
example has about half as many imprecisions.

Number of missing Operands — 7
Number of incomplete references • 12
Number of implicit type conversion — 3
Number of terminology charges • 0
Number of refinement or elaboration • 0
Number of implicit sequencing decisions — 4

The example is interesting as a test of the generality of the mechanisms which worked on
the first example, and because of the new issues it raises. We will examine each of these
to illustrate the range of capabilities added to the prototype to enable - it to corr.ct ly
unders tand this examp le and produce the operational program of Figure 6.

1. Scope of conditionaL in natural language communication the end of a conditional
is almost never explicit. Instead, context must be used to determine whether
subsequent statements are part of the conditional. In sentence three of the
example, the input to formula 2 is the SOL entry found in the previous sentence.
Thus, sentence three is really part of U~e conditional statement.

2. Implicit formation of relations. In sentence two, the relative transmission time
produced by formula 1 is supposed to be associated with the subscriber. Since
that association is not established elsewhere, it is implicitly being established
here. Hence this passive construct must be treated as an active one.

3. ImpLicit creation of outputs. In a similar fashion, various sentences establish
associations with a transmission schedule (the output of this example) but an
instance of one is never explicitly created. Such usage indicated that an implicit
creation of the output is required.

4. Expectation failure. In addition to process and structural statements, a
specification normally contains expectations about the state of the computation
at some point which provide context for people to exp lain why something is
being done or some properties of its result. They also provide some
redundancy against which an understanding of the specification can be checked.
In the example, one of these expectations (that all of the components of the
entries of the output have been produced) fails, which indicates either a
misunderstanding of the specificati on or an inconsistency or incompleteness. In
this case, both our example and the actual specification from which it was drawn
are incomplete; they fail to describe how the length field of the entries of the
transmission schedule are calculated from the inputs. 

~—~~~~~~~ - -- - ••• ~~~~~- -~~~~~~~~~~~~~~~ • •~~~~~~~-~~~~~~-~~~ -~~~~~~ --~ -~~-.--



- -

18

7. DESCRIPTION OF TIlE PROTOTYPE SYSTEM

The prototype system is structurally quite simple. It has three phases (Linguistic,
Planning, and Meta-Evaluation) which are sequentially invoked to process the informal
specification. Each phase uses the results of the previous phases, but no capabili ty
currently exists to reinvoke an earlier phase if a difficulty is encountered. Hence, either
ambiguity must be resolved within a phase or the possibilities passed forward to the next
phase for it to resolve.

We will describe the prototype system by working backward from the goal through the
phases (in reverse order) toward the input to expose the system design and provide
context for understanding the operation of each phase.

The goal of the system is to create a formal operational specification from the informal
input, which means that it must complete each of the partial descriptions in the input to
produce the output. In general, each partial description has several different possible
completions, and a separate decision must be made for each partial description to select
the proper completion for it.

Based on the partial description and the context in which it occurs, an a priori ordered set
of possible completions is created for each partial description. But one decision cannot be
made in isolation from the others; decisions must be consistent with one another and the
resulting output specification must make sense as a whole. Since the output is a program
in the formal specification language, it must meet all the criteria for program
well-formedness. Fortunately, programs are highly constrained objects (one reason they
are so hard to write), so there are many well-f ormedness criteria which must be satisfied.

This provides a classical backtracking situation (11], since there are many interrelated
individual decisions that in combination can be either accepted or rejected by some criteria
(the weII-formedness rules). In such situations, the decisions are made one at a time in
some order. After each decision the object (program) formed by the current set of
decisions is tested to see if it meets the rriteria (well-formedness rules). If it does, then
the next decision is made, and so on, until all the decisions have been made and the result
accep ted. The resulting object (program) is an acceptable solution (formal specification)
for the problem (informal specification). If at any stage the partially formed result is
rejected, then the next possibility at the most recent decision point is chosen instead and
a new result formed and tested as before. If all possibilities have been tried and rejected
or the most recent decision point, then the state of the decision-making process is backed

up to that existing at the pievious decision point and a new possibility chosen. This
process will terminate either by finding an acceptable solution (formal specification) or by
determining that none can be found.

L .
~~~~~~~~~

. . . .

19

The order in which decisions (rather than the order of alternatives within a decision) are
made should be chosen to maximize early rejection of infeasible combinations of decisions.
This requires that the rejection criteria can be applied to partially determined objects.
The preferred decision order is clearly dependent on the nature of the
acceptance/rejection criteria.

We now let the nature of the well-formedness criteria determine the structure of the
prototype system so that the early rejection possibilities inherent in the criteria can be
utilized. The criteria fall into three categories: dynamic state-of-computation criteria,
global reference criteria, and static flow criteria. Each of these categories must be
handled differently.

The dynamic state-of-computation criteria are based only on the current “state” of the
program and its data base (e.g., “the constraints of a domain must not be violated” and “it
must be possible to execute both branches of a condition”). They require that all
decisions that affect the computation to that point (but not beyond) must be made before
the criteria can be tested. Thus, if decisions could be made as they are needed by the
computation of the program and the program “state ” examined at each stage of the
computation, then the dynamic state-of-compu tation criteria could be used to obtain early
rejection of infeasible decisions.

This is exactly the strategy adopted in the design of the prototype system. However,
since no actual input data is available for the program to be tested, and since the program
must be well-formed for a variety inputs, symbolic inputs rather than actual inputs are
used. Instead of actual execution, the program is symbolically executed on the inputs,
which provides a much stronger test of well-formedness than would execution on any
particular set of inputs.

However, completely representing the state of the computation as a program is
symbolically executed is very difficult (e.g., determining the state after execution of a loop
or a conditional statement) and more detailed than necessary for the well-formedness
rules. Theref ore, the prototype system uses a weaker form of interpretation , called
Meta- Evaluation, which only partially determines the program’s state as computation
proceeds (e.g., loops are executed only once for some “gene ric” element, and the effects
of THEN and ELSE clauses are marked as POSSIBLE, but are not conditioned by the
predicate of the IF). This Meta-Evaluation process is much easier to implement and still
provides a wealth of run-time context used by the acceptance/rejection criteria to
determine program well-formedness.

- -
— - — -

20

The global referencing criteria (such as “parameters must be used in the body of a
procedure”) test the overall use of names within the program and thus cannot be tested
until all decisions have been made. They are tested only after the Meta- Evaluation is
complete.

The final category of cri teria , static flow (e.g., “items must be produced before being
consumed” and “outputs must be produced somewhere”), are more complex. The
Meta-Evatuation process requires a program on which to operate, which may contain
partial descriptions that the Meta-Evaluation process will attempt to complete by
backtracking. This program “outline” is created from the •nformal input for the
Meta-Evaluation process by the flow analysis, or Planning, phase, which examines the
individual process descriptions and the elaborations, refinements, and modifications of them
in the input, then determines which pieces belong together and how the refinements ,
elaborations, and modifications interact. It performs a producer/consumer analysis of
these operations to determine their relative sequencing and where in the sequence any
unused and unsequenced operations should occur. This analysis enables the Planning
phase to determine the overall operation sequencing for the program outline from the
partial sequencing information contained in the input. It uses the data flow
well-f ormedness criteria and the heuristic that each described operation must be invoked
somewhere in the resulting program (otherwise , why did the user bother to describe itt)

• to complete the partial sequence descriptions.

If the criteria are not sufficiently strong to produce a unique program outline, the
ambiguity must be resolved either by interacting with the user or by including the
alternatives in the program outline for the Meta-Evaluation phase to resolve as part of its
decisionmaking process. In the prototype system, the Meta-Evaluation phase is prepared
to deal with only minor sequencing alternatives such as the scope of conditional
statements (If a statement following a conditiona~ assumes a particular value of the
predicate, it must be made part of one of the branches of the conditional.) and demons
(Are all situations which match the firing pattern of a demon intended to invoke it or Only
those which arise in some particular context, and if so what context?). Major sequencing
issues--such as whether one statement is a refinement of another or not--that cannot be
resolved by the Planning phase must be resolved by the user before the Meta-Evaluation
phase.

Both the Planning and Meta-Evaluation phases use a structural description of the
application domain to provide contex t for their program execution, and inference rules
which define relation interdependencies in the process domain. This structural base is the
application-specific foundation upon which the Planning arid Meta-Evaluation phases rest,
and must be provided before they are invoked. It contains all the application-specific
contextual knowledge. It augments the system’s built-in knowledge of data flow and
program well-formedness and enables the system to be specialized to a particular
application and to use this expertise in conjunction with its built-in program formation
knowledge to formalize the input specification.

-~~ -- -~~~~~~~~ —~~~~~ -~~~~~~ ~~~~- --- - -

21

The construction of a suitable application-specific structural bas. is itself an arduous,
error-pron. task. Furthermore, our study of actual program specifications indicated that
most of the structural information was already informally contained in the program
specification. We therefore decided to allow partial descriptions in the specification of the
structural base end to permit such descriptions to be intermixed with His program
specification.

Since we are concerned only with the semantic issues raised by using partial descriptions
in the program specification, the system uses a parenthesized version of the natural
language specification as its actual input to avoid any syntactic parsing issues. This
parenthesized input does not affect the semantic issues we have discussed.

The first tasks, then, of the system are to separate the process descriptions from the
structural descriptions, to convert both to internal form, and to complete any partial
structural descriptions. These tasks comprise the system’s Linguistic phase, which
precedes the other two.

if a formal structural base already exists for some application, then, of course, it is loaded
first and is augmented by and checked for consistency with any structural statements
contained within the program specification.

Thus, in chronological order (rather than the reverse dependence order used above), the
system’s basic mode of operation consists of reading an Input specification, separating it
into structural and processing descriptions; completing the structural descriptions and
integrating the result into any existing structural base; determining the gross program
structure by producer/consumer analysis during the Planning phase; and, finally,
determining the final program structure through Meta-Evaluation.

I
L ~~~~•

-
—- - _- - — --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
—-

~
--

~~~~~
--- _ _ -----

~~
—-

~~~

22

REFERENCES

1. Balzer , Robert, Neil Goldman, and David Wile, “On the Transformational
Implementation Approach to Programming,” 2nd International Conference on
Software Engineering, October 1976, p. 337.

2. Bell, Thomas E. and David Bixler, “An Extendable Approach to Computer-Aided
Software Requirements Engineering,” 2nd InternationaL Conf.renc. on Software
Engineering, October 1976, p. 70.

3. Teichroew, Daniel and Ernest Allen Hershey, III, “PSL/PSA A Computer-Aided
Technique for Structured Documentation and Analysis of Information Processing
Systems,” 2nd InternationaL Conference on Software Engineering, October 1976,
p. 2.

4. Jones, Anita K. and Barbara H. Liskov, “A Language for Controlling Access to
Shared Data,” SEC SuppLement, 1976, p. 68.

5. Wulf, Wm. A. and Mary Shaw, “An Introduction to the Construction and Verification
of Alphard Programs,” 2nd InternationaL Conference on Software Engineering,
October 1976, p. 390.

6. Lampson, B. W. and .1. J. Horning, R. L London, J. G. Mitchell, and C. J. Popek,
“Report on the Programming Language Euclid,” Xerox Research Center, Palo Alto,
August 1976.

7. Snowdon, R. A., PEARL: An interactive system for the preparation and validation
of structured program:. Computing Laboratory, University of Newcastle Upon
Tyne, November 1971.

8. Schwartz, J. T., On Programming, An Interim Report on the SETL Project ,
Computer Science Department, Courant Inst. Math. Sci., New York University, 1973.

9. Guttag, John V., Ellis Horowitz, and David P. Musser, “The Design of Data Type
Specifications,” 2nd InternationaL Conference on Software Engineering, October
1976, p. 414.

- ~~~~ — -~--~~~~~~~~~
--
=

~~~~

-
-— -

~~
-

~~~
- — p :;- ~~~~~~



23

10. CODASYL, Data Base Task Group, April 1971 Report, ACM, New York.

11. Gerhart , Susan L and Law rence Velow itz, “Control Structure Abstractions of the
Backtracking Programming Technique,” 2nd InternationaL Conference on Software
Engineering, October 1976, p. 391.

J 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~. -~~ - - • ~~~~~~~~~ - - —
~~~~~~~~

- -
~~~
—

~~~~~~~~~~ 
-


